Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Digital Material Modeling and Simulation
Case study of the design and optimization of Macro-DICE.
Hardware Implementation:
- [VoxRob](https://gitlab.cba.mit.edu/bej/voxrob)
- [rover](https://gitlab.cba.mit.edu/ccameron/rover)
<img src="./Dice_Voxrob.png" width="100%" />
<img src="./Dice_Voxrob_2.png" width="100%" />
----
## Steps
1. Find Goal
- CNN to learn target (instructions) from Image
- [Progress](https://gitlab.cba.mit.edu/amiraa/physical-computing-design-tools/-/blob/master/02_Presentation/CNN/CNN.md)
- Create/get data to train
2. Auto Encoder to find latent representation for it
3. Control Strategy based on the
- Train using the simulator + WANN
- [Progress](../AI_that_grows/AI_grow.md)
4. Fit Arbitrary Graph/data flow on DICE
- [Progress](https://gitlab.cba.mit.edu/amiraa/physical-computing-design-tools/-/blob/master/02_Presentation/prob/prob.md)
5. Assembly and Testing
- [Meso-dice assembly](https://gitlab.cba.mit.edu/zfredin/meso-dice)
- [Robotic assembly](https://gitlab.cba.mit.edu/amiraa/swarm-morphing/-/blob/master/Science_Robotics_Paper/LOI.md)
---
## Simulation Environment
### Rover
- [Check Control Function Graph](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/graph/control/control.html)
<img src="./1rover4.gif" width="40%" />
<img src="./1rover2.gif" width="40%" /><br/>
<img src="./1rover1.gif" width="40%" />
<img src="./1rover3.gif" width="40%" />
- [Simulation Demo](https://amiraa.pages.cba.mit.edu/metavoxels-code/demos/indexRover.html)
- [Progress](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/robotics/rover/rover.md)
### Wal
<img src="./walker.gif" width="80%" />
- [Progress](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/robotics/walking/walking.md)
----
## Optimization
- Two level optimization
- Shape (body) => [Hierarchal Local Online Shape Optimization](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/top_opt/search.md)
- Control (mind) => [AI that grows](../AI_that_grows/AI_grow.md)
- Simultaneous optimization of shape and control
---
## Robotics Design
Using the [MetaVoxel simulation tool](https://gitlab.cba.mit.edu/amiraa/metavoxels):
<img src="./dice_assembly.gif" width="80%" /><br/>
---
## Assembly
- Option for different kinds of assembly (swarm assembly)
<img src="./assembly.gif" width="80%" /> <br/>
---